Definition ========== Smith normal form ----------------- Let :math:`\mathbf{M}` be :math:`m \times n` integer matrix. There exist some unimodular matrices :math:`\mathbf{L} \in \mathbb{Z}^{m \times m}` and :math:`\mathbf{R} \in \mathbb{Z}^{n \times n}` such that .. math:: \mathbf{D} := \mathbf{LMR} = \begin{pmatrix} d_{1} & & \mathbf{O} & \mathbf{0} \\ & \ddots & & \vdots \\ \mathbf{O} & & d_{r} & \mathbf{0} \\ \mathbf{0} & \cdots & \mathbf{0} & \mathbf{O} \end{pmatrix} where :math:`d_{i}` is positive integer and :math:`d_{i+1}` devides :math:`d_{i}`. Then :math:`\mathbf{D}` is called Smith normal form. Row-style Hermite normal form ----------------------------- Let :math:`\mathbf{M}` be :math:`m \times n` integer matrix. It has a row-style Hermite normal form :math:`\mathbf{H}` if there exists a unimodular matrices :math:`\mathbf{L} \in \mathbb{Z}^{m \times m}` such that :math:`\mathbf{H}=\mathbf{LM}` satisfied the following conditions 1. :math:`H_{ij} \geq 0 \quad (1 \leq i \leq m, 1 \leq j \leq n)` 2. :math:`H_{ij} = 0 \quad (i > j \, \wedge i > r)` 3. :math:`H_{ij} < H_{jj} \quad (i < j, 1 \leq j \leq r)` 4. :math:`r = \mathrm{rank} \mathbf{A}` If :math:`\mathbf{M}` is full rank, the Hermite normal form :math:`\mathbf{H}` is uniquely determined. Column-style Hermite normal form -------------------------------- Let :math:`\mathbf{M}` be :math:`m \times n` integer matrix. It has a column-style Hermite normal form :math:`\mathbf{H}` if there exists a unimodular matrices :math:`\mathbf{R} \in \mathbb{Z}^{n \times n}` such that :math:`\mathbf{H}=\mathbf{MR}` satisfied the following conditions 1. :math:`H_{ij} \geq 0 \quad (1 \leq i \leq m, 1 \leq j \leq n)` 2. :math:`H_{ij} = 0 \quad (i < j \, \wedge j > r)` 3. :math:`H_{ij} < H_{ii} \quad (i > j, 1 \leq i \leq r)` 4. :math:`r = \mathrm{rank} \mathbf{A}` If :math:`\mathbf{M}` is full rank, the Hermite normal form :math:`\mathbf{H}` is uniquely determined. Reference (Japanese) -------------------- * 伊理 正夫, 線形代数汎論 (朝倉出版, 2009)